
Leaving behind
ADC & FEO:
A CASE STUDY
IN “CONTENT
ORCHESTRATION”
FOR APP
ACCELERATION

2

3 Introduction

4 Thesis

6 The Modern Application
 10 Trend Watch: Single Page Apps
11 Anatomy of an “Orchestrated”
 eCommerce Site
15 A Customer-Focused Test
17 You Might also Enjoy Reading

 18 About Yottaa

Contents

3

Introduction

Prevailing wisdom in web technology holds that in order to achieve faster performance, appli-
cations must be pared down. Apps today are heavy and bloated, the idea goes, and “lighter and
simpler” is the prudent technologist’s new mantra.

We’ll admit it’s a pleasantly intuitive idea. While internet connections are getting faster and hard-
ware is constantly improving, web apps are actually getting slower – so something is clearly wrong.
And when looking for the source of this dissonance, the obvious culprits are high-resolution images,
JavaScript-enabled features, and third-party ads, trackers and scripts. This proliferation of rich
content has led to the average web app growing threefold in weight since 2012; it makes sense to
blame it for the problem of widespread slow performance. This assumption, however, misses
a bigger problem.

In our view, it’s the means by which we approach optimization that has veered off course, not
the contents of the apps themselves. While the creators of web apps are not entirely blameless,
they’ve largely followed a natural progression in adding functionality and fidelity. In contrast,
methods of application delivery and optimization available in the market have scarcely evolved.
Applying these outdated optimization techniques to today’s complex applications has left users
frustrated, wasted development resources, and burned technology budgets with negative-ROI
solutions. This is the real problem, and its only viable solution is to modernize our approach to
optimization.

To prove our thesis we’ll show that it’s possible to use next-generation “content orchestration”
techniques to create a brilliant user experience for all users with an application that on paper
should be bloated and slow. And we’ll do it without reducing functionality.

But first, some background. What’s the current state of optimization?

4

Thesis

According to those “in the know” in internet technology, there are two primary mechanisms to
accelerate today’s dynamic, Internet-facing applications: network optimization and front-end
optimization (FEO). In fact, these are the only separate categories listed in Gartner’s Technology
Insight for Content Delivery Networks (aside from edge caching, which is the base feature of a CDN).

While this reading of the market has generally held true for the past decade, lately some of the
inherent limitations in each of these approaches have become evident.

For one, network optimizations are up against the laws of physics. Where dynamic/personalized
content is concerned, the bytes must always traverse a path from the visitor’s device through the
Internet to an origin server, where the content is generated by a database, then make the trip
back again. In other words, no amount of route optimization or cache management can change
the fact that some significant geographic distance must be covered by the data.

As a result, online applications that rely on pure CDN and ADN technologies are getting slower:
the amount of dynamic content they host is growing quickly, while latency can only be reduced
by tiny increments, if at all.

FEO, for its part, suffers from being both too narrow and too broad. On one hand, it is limited by
a scope that begins and ends with content that is owned and managed by the application owner
and can be re-written or re-organized manually. In a world where third party content is taking an
increasing share of applications, this is a problem. On the other hand it’s overly broad in the variety
of techniques that fall under the moniker. Official descriptions of FEO include one-off programming
hacks, software automation (much of which has since migrated to browsers), and complex feats of
application engineering – all rolled into one:

 For the true “last mile,” web performance optimization — often called front-end optimization
	 	 (FEO)	—	manipulates	assets	to	optimize	time-to-first-render	and	time-to-first-interaction.	
 Web performance optimization solutions achieve these feats by: 1) bundling assets and images
	 	 to	make	fewer	round	trip	calls;	2)	sequencing	elements,	e.g.,	focusing	on	above	the	fold	content	
	 	 first	or	progressively	painting	content;	3)	compressing	code	and	images;	and	4)	image	format,	
	 	 resolution,	and	art	direction	changes.

Market Overview: CDN Platforms and Digital Performance Services (Forrester Research)

https://www.forrester.com/Market+Overview+CDN+Platforms+And+Digital+Performance+Services/fulltext/-/E-RES116163

5

 Front-end optimization (FEO), sometimes called Web content optimization or Web performance
 optimization, alters the pages produced by the Web servers, so that they are both delivered faster
	 by	the	network	and	rendered	more	quickly	by	the	browser.	Examples	of	FEO	techniques	include:		
	 Combining	multiple	Cascading	Style	Sheets	(CSS)	files	into	a	single	file.	Combining	multiple	
 images	into	a	single	file,	using	CSS	sprites	and	inlining…Increasing	cache	efficiency	by	manipulating
 headers,	such	as	altering	expiration	times.	Sending	only	deltas	(changes),	if	the	client	has	retrieved
	 the	page	before.	Taking	advantage	of	the	application	cache	in	browsers	that	support	HTML	5.

Technology	Insight	for	Content	Delivery	Networks (Gartner)

Analyst-speak aside, “on the ground” industry sentiment says that FEO as a whole is brittle – i.e., it
frequently causes errors and requires more time than it’s worth. What’s more, it will generally be
made redundant with a broad adoption of HTTP/2. For example, the following FEO optimizations,
already marginalized, would further fade to insignificance with HTTP/2:

 • Script combination
 • Script inlining
 • Script minification
 • Domain sharding/request parallelization

Other key FEO optimizations might still “work” in the strictest sense in an HTTP/2 world, but will
have a diminishing impact over time. These include:

 • GZip compression
 • DataURI scheme
 • Lossless & lossy image compression
 • Image right-sizing
 • Image transcoding
 • Responsive imaging

These techniques help to cut down the number of bytes, particularly for images, but don’t account
for dynamic content or third party content. That would make them what we call “technical gravy”:
useful in certain cases as a point solution, but otherwise irrelevant to overall user experiences.

You may have picked up on a theme here. The biggest problem with legacy optimization methods
is the inability to address dynamic, personalized, and third party content. To make modern
applications fast, you simply can’t avoid the source of the problem.

https://www.gartner.com/login/loginInitAction.do?method=initialize&TARGET=http%3A%2F%2Fwww.gartner.com%2Fdocument%2F3170618%3Fref%3DsolrAll%26refval%3D160454071%26qid%3Dadac0d3f2292a38a3b4e2a19242ecbb6

6

The Modern Application

To find out how to approach the source of the problem, we need to understand the applications
we’re dealing with.

Dynamic applications come in all shapes and sizes, and some of the most complex are eCommerce
portals. Aside from dealing with how to represent and organize thousands, hundreds of thousands,
or even millions of SKUs, applications must also account for users on a variety of devices and the
expectation for personalized features. This scenario has given rise to a dizzying array of tools that
promise to draw the sword (revenue) from the stone (fickle consumers). They invariably operate
by inserting “just one innocuous piece of JavaScript” to your application.

(Click to enlarge)

http://cdn.chiefmartec.com/wp-content/uploads/2015/01/marketing_technology_jan2015.png

7

Looking at this staggeringly rich ecosystem, one might begin to question the default wisdom of
prioritizing “simple, lightweight” applications. If your competitors are freely leveraging a bevy of
such tools, how can you avoid creating your own cattle car of distributed domain calls to these
services? How do you say no to a tool that might give you even the slightest edge?

For an example of how these questions often play out, let’s look at a popular eCommerce portal
for a sports equipment retailer. This is a request map showing how content is being added to
the site:

http://requestmap.webperf.tools

8

Not for the faint of heart, what this tangled mess represents is:

 • Nodes for every separate domain from which content is being fetched
 • The volume (bytes) of content being retrieved, represented by the size of the node
 • The amount of latency inherent in retrieving that content, represented by the length
 of the lines

The chart serves to visualize just how much is happening behind the scenes to produce a conven-
tional eCommerce portal today. Dozens of separate domains serve hundreds of calls for content,
some even begetting further calls to tertiary sites. For the question of “how to say no” to 3rd
party tools the answer is, at least for this company, “we don’t.” The chart also shows the extent
to which a typical site’s content is completely outside of a CDN or FEO implementation’s control.

So how does an application with this level of complexity map out in typical measures of
performance, based on the status-quo assumptions?

According to a web performance grader tool from Yellow	Labs, it scores very poorly indeed. This
tool takes a number of “best practices” that, in theory, lead to great user experiences, and scans
any site to see how many it meets. Our case study eCommerce app receives an unequivocally
failing grade: zero out of 100.

http://yellowlab.tools

9

It would be easy to write this off as a poorly made site, run by idiots, and sure to fail. Unfortu-
nately, we know better: that it’s a longtime member of the Internet Retailer 500, the list of the
top-grossing eCommerce firms in the country. Slow and technically indebted it may be, but it’s
not failing.

How does a successful site get to this point? Let’s review some of the content on this page by way
of a thought exercise. The following are a sample of the scripts that are present on the page and
contributing to the failing grade. What would you remove?

 • Coremetrics - provides business insight so site owners can make intelligent decisions
 • Monetate - optimizes the visitor’s journey with targeted, personalized content
 • LivePerson - allows shoppers to get real-time help with their journey
 • Criteo - enables retargeting which is proven to optimize conversion rates by following
 users around the internet with reminders that they really want that hoodie they were
 browsing for...

This exercise brings into focus the tension between eager marketers and concerned technologists.
Clearly, each of these tools was implemented with specific intentions and ROI goals. Removing
any one could cut into customer acquisition and retention efforts, leading to a potential loss of
market share in a brutally competitive online retail environment. And yet their cumulative effect
on performance is such that it cuts into the user experience and drags down the effectiveness of
all aspects of the site. It looks like we’re stuck.

But here’s where the status-quo assumptions break down. As noted above, conventional wisdom
holds that to improve performance for an application of this breadth and scale, a good number
of these features must be cut entirely, and a battery of time consuming front-end optimizations
must be implemented, likely by a dedicated and skilled performance team. Not so. What follows
are results taken after optimizing the same site we’ve examined here, which was accomplished
with zero changes to code, and no reduction in complexity or functionality, through a method
we call content orchestration.

10

Trend Watch: Single Page Apps

There’s a growing revolution in how web applications are built to
serve the needs of complex functionality. “Single page apps” (SPAs)
built with frameworks like Backbone.js and Angular.js are different
animals than traditional web apps – they’re much less dependent on
back-end logic, providing rich interactivity on the client side without
having to make multiple calls for separate HTML pages to accomplish
a task. Examples of such apps include Airbnb, Soundcloud, TurboTax,
Google Analytics, airline websites such as Jetblue, and many many more.

These developments are a huge step forward in bringing the kind of
responsiveness normally reserved for native applications to the web.
Indeed from a developer’s perspective, SPAs are more like desktop
apps than web apps – as one blogger noted, “It means we can build
real software in a web page instead of just using JavaScript for simple
event handling and DOM manipulation.”

But as always, there’s a catch. Single page apps like these might be
built differently than traditional web pages, but they’re the same in
one way: the need to be extended via SaaS and third-party JavaScript.
Just because a team builds a great ticket booking application with a
current-gen framework doesn’t mean they’re also going to custom-code
an analytics platform or an advertising network. Those services will
still execute the same way they do sites like the one exemplified in
this document – by calling external scripts and executing them on
the page.

Single page apps and their ilk solve one big challenge – the ability to
execute complicated tasks on the open web quickly and efficiently.
But they can’t solve the performance problems that plague the web.
For that, we’ll need a new paradigm for optimization, just as we have
a new paradigm for app development.

10

11

Anatomy of an “Orchestrated” eCommerce Site

The “version” of the site we’re looking at in this section is actually the same exact site, at least
from the perspective of the codebase that the company maintains. The only thing that’s changed
is how it’s delivered and optimized on the fly, once a request has been made.

Here’s the performance grader score again. Look for the differences:

12

It’s still terrible! Some minor improvements have been made but it’s still just a 15/100 grade.
The biggest difference comes in the reduction of the number of overall requests and separate
domains, which are each cut roughly in half. More on that later.

And here’s the request map:

A bit more tame, but still wild looking, and with lots of latency involved. So far, little has changed.

13

Now things start to get interesting. Below are two timelines showing when JavaScript elements
were loaded in relation to the overall timeline of the page loading. The first corresponds to
the same “unoptimized” version that was on display in the first section, the second is the
Yottaa-optimized version.

Original:

Optimized:

When site becomes usable (7.8sec)

When site becomes usable (3.6sec)When content above-the-fold is visible (3.6sec)

When content above-the-fold is visible (6.7sec)

To the untrained eye, these might look like two sides of the same coin. On the contrary, what’s
happened in the process of optimization is the complete elimination of the “page completion”
stage (teal), and a significant compression of the remaining stages. What that means in practice:
not only is the crucial above-the-fold content fully rendered 3 seconds faster, the page becomes
sufficiently complete as to be usable at the same moment – cutting off over 4 seconds of waiting.
In an ADC/FEO world where shaving milliseconds of load time is the rule, this is a serious coup.

14

This result is accomplished by “breaking the rendering path” – that is,
overriding the browser’s normal behavior to skip or rearrange steps
in the process. It’s a natural byproduct of using content orchestration.
Notice that in the first timeline, spikes of JavaScript load activity are
distributed throughout 4 stages of the load process. In the second, much
of the JavaScript action has shifted until after the point where page is
usable. By sending static content from cache and re-prioritizing the
loading of JavaScript, the overall experience has improved significantly.

Perception is Reality

The visualization also taps into a key concept: perceived speed is
more important than actual speed. As you may have noticed, the
difference between the technical “page complete” time has only
moved from 13 seconds to 9 seconds. But what you don’t know can’t
hurt you, as they say – and if the user gets served all of the key content
they’re looking for quickly (in 4 seconds or less) they’ll happily engage,
while other scripts can continue loading. This background loading
can occur for as long as it needs to, provided the scripts don’t interrupt
the experience.

And it’s not just that the script processing has been pushed later. Many elements have not been
loaded at all, a change we noted when looking at the website grader. How can that square with
our claim that nothing on the site has been changed?

In fact, it’s all still there, it’s just waiting in the wings. In
addition to the intentional delay of JavaScript, a number
of elements have also been set to load only upon
request – that is, when a user scrolls into the vicinity
of the element or activates it with a hover or click. That
means the initial view is rendered as if the site is lighter
than it really is, without losing the overall functionality.
By layering in content “just in time” with orchestration,
we can further amplify the user experience.

Think our masked example might

be an outlier? We don’t blame

you. For proof of how common

it is for eCommerce sites to

diverge from performance best

practices, consider the industry

king: Amazon.com. Their grader
score and timeline illustrate the

same principles we’re discussing.

Amazon certainly doesn’t get a

“D” in revenue or market share.

http://www.amazon.com
http://yellowlab.tools/result/ec9axammz0
http://yellowlab.tools/result/ec9axammz0
http://yellowlab.tools/result/ec9axammz0/timeline
http://yellowlab.tools/result/ec9axammz0

15

A Customer-Focused Test

We’ve reviewed a single sample, which showed some compelling results. But a single sample is not
the same as a consistent user experience. We have two other ways to quantify the improvements
gained from an orchestration approach.

First – Distribution.

As you can see below, there’s a pretty broad range for load times (in this case “document complete”
time), optimized or not. The web is still an inconsistent and variable beast – you can’t expect every
user to get the same experience every time.

You can, however, minimize the variation as much as possible. The standard deviation between
the optimized and unoptimized versions shown here has been reduced from 1.5 seconds to
1 second, while the average has gone from 3.1s to 2.3s.

Within 2.2 seconds:

61%
15%

of optimized
samples occur

of unoptimized
samples occur

16

Interested in learning more about orchestration?

Read our technical whitepaper here: Orchestrating Web Engagement Requires Context Intelligence

You can read much more about
the CEXi in our intro guide.

Introducing the
CUSTOMER
EXPERIENCE
INDEX

As you’d expect based on those shifts, benchmarks like the 75th and 95th percentiles have
undergone still more dramatic improvements. (Using high percentile benchmarks is a common
practice in performance optimization to gauge variability). Not shown in the chart is a long tail
of sample bins going up to 24 seconds, where only “Unoptimized” samples are present.

Second – Customer Experience Index

The CEXi compiles conventional web performance measures like
Time to Start Render and Time to Display for both mobile and desk-
top tests, and mixes in some extra weighting and balancing to ac-
count for parity between desktop and mobile experiences, and the
relation of the weight to the performance. Lower scores are better.

Between the original and the optimized version, the CEXi score
jumps from 2.38 to 1.03 – a leap that takes it from the measly 22nd
percentile of its peers in the IR 500 list of eCommerce sites, all the
way to the 88th percentile.

The magic is in content orchestration, the missing piece for optimizing today’s complex, dynamic
applications. By shifting and re-prioritizing when every individual element loads – including
third-parties – we can break the supposed binding relationship between heavy pages and slow speeds.

http://www.yottaa.com/why-yottaa/resources/#ufh-c-209819-optimization-ebooks-whitepapers-and-videos
http://resources.yottaa.com/i/630972-introducing-cexi/9

17

YOU MIGHT ALSO ENJOY READING

INTERESTED IN LEARNING MORE ABOUT ORCHESTRATION?

Read our technical whitepaper here:
Orchestrating Web Engagement Requires
Context	Intelligence

http://pages.yottaa.com/HackingValueDelivery.html?utm_referrer=http%3A%2F%2Fwww.yottaa.com%2Fcompany%2Fblog%2Fapplication-optimization%2Fthe-value-of-the-cio-in-the-age-of-the-customer-slideshare%2F
http://pages.yottaa.com/DeliveringTransformativeExperiences.html
http://pages.yottaa.com/BeyondCDN.html
http://pages.yottaa.com/MobileMistakeeBook.html?utm_referrer=http%3A%2F%2Fwww.yottaa.com%2Fcompany%2Fblog%2Fmobile%2Fwhat-google-really-means-by-mobile-friendly%2F
http://pages.yottaa.com/OrchestratingWebExperiences.html
http://pages.yottaa.com/AdaptationSilverBullet.html
http://pages.yottaa.com/WebSecurityWAFeBook_Registration.html
http://www.yottaa.com/why-yottaa/resources/#ufh-i-161678577-whitepaper-orchestrating-web-engagement-requires-context-intelligence/209819
http://www.yottaa.com/why-yottaa/resources/#ufh-i-161678577-whitepaper-orchestrating-web-engagement-requires-context-intelligence/209819
http://www.yottaa.com/why-yottaa/resources/#ufh-i-161678577-whitepaper-orchestrating-web-engagement-requires-context-intelligence/209819

About Yottaa

Yottaa is a SaaS solution to manage, optimize
and secure digital experience delivery.

Yottaa accelerates online and mobile performance, maximizes end
user engagement, and delivers instant, actionable insights to drive
business results via an intelligent, automated cloud platform. Our
ContextIntelligenceTM platform is purpose-built to deliver the power
and flexibility required by IT organizations to exceed SLAs for uptime,
performance, scalability and security, paired with patented technologies
that accelerate the delivery of innovative features and products to
improve online and mobile channel execution.

For more information, please visit

W W W.YOT TA A .C O M

If you’d like to discuss this paper, or meet with one of our experts to help you

expand upon this topic, please feel free to send an email to info@yottaa.com,

or contact us toll free in the USA at 1-877-767-0154.

International customers can reach us at +1-617-896-7802. For more

details, visit www.yottaa.com

http://yottaa.com

