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Overview

 Ruby at Scale
 What is Event Analytics?

 What are the different ways you could
do It?

e How we did it
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Event Analytics
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High Write Volume

*Each new data source adds X requests per second
*Data never stops arriving

Continuous Data Growth

*We only add more data
eHistorical data is valuable

Flexible Data Exploration

*Ad hoc queries
*Complex aggregations
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Oh and we are a startup
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Our reguirements:

On Launch Day

# of data sources 15
# of events per minute 80
# GBs data stored 20

3 months later (projected)

# of data sources 45
# of events per minute 5600
# GBs data stored 100
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Ralls default architecture
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Ralls default architecture

\ ¢ “Just” a Rails App
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Ralls default architecture

* Performance Bottleneck:

/ . Too much load
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Let's add replication!
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Let's add replication!
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Let's add replication!

Performance Bottleneck:

/ Still can’t scale writes
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What about sharding?
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What about sharding?

/ J Scalable Writes! \
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What about sharding?
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Key Value stores to the rescue?
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Key Value stores to the rescue?
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Key Value stores to the rescue?

/ J Scalable Writes! \
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Can | Hadoop my way out of this?
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Can | Hadoop my way out of this?

Scalable Writes!
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Can | Hadoop my way out of this?

[ Data |

Scalable Writes!
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& Flexible Reports!
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Can | Hadoop my way out of this?
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w “Just” a Rails App
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Can | Hadoop my way out of this?

/ w Scalable Writes!
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* Development Bottleneck:

Too many systems!

w “Just” a Rails App
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Reporting Server
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MongoDB!




MongoDB!
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MongoDB!

v Scalable Writes!
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MongoDB!

¢ “Just” a rails app

¢ Scalable Writes!
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¢ Sharding!
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¢ Sharding!

¢ High Concurrency
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& Sharding!

w High Concurrency

w Scale-Out
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MongoDBSharding

shard, shard. shard; shard,

replic s=t
config servers
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MongoDBSharding

shard, shard. shard;

config servers \
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Replica Sets let us
scale storage &
transaction capacity
for each shard




MongoDBSharding

shard, shard. shard;

replic s=t

config servers

Replica Sets let us
scale storage &
transaction capacity
for each shard

Mongos routes
transactions to shards
client
based on “shard key” -
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MongoDBSharding

shard, shard. shard;

Config servers store
information about
which shards exist

config servegrs

Replica Sets let us
scale storage &
transaction capacity
for each shard

Mongos routes
transactions to shards
client
based on “shard key” -
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Inserting

shard, shard. shard; shard,

/ -
/ repifics sat
config servers Insert { ‘name’ : bob }
//Q Shard key == name

m bob = Shard 2

insert { ‘name’ : bob }
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Querying
shard, shard. shard; shard,

/ -
/ repifics sat
config servers Query { ‘name’ : bob }
// Shard key == name

|

Query { ‘name’ : bob }
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Map Reduce

shard, shard. shard; shard,

replic s=t
config servers

Map-reduce(...)
7 -

Map-reduce( ...)
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Working with Mongo

2T
AR

- * MongoMapper makes it
. look like ActiveRecord

Documents are more
natural than rows In
many cases

Map-Reduce rocks (but
needs better support in
rails)

http://www.flickr.com/photos/elhamalawy/2526783078/



class Page
include MongoMapper: :Document
key :url, :required => true, :indexed => true
many :views, :class => View

end

class View
include MongoMapper: :Document
key :created_at
key :user_id
belongs_to :page

def before_save
created_at = Time.now
end
end
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class Page
include MongoMapper: :Document
key :url, :required => true, :indexed => true
many :views, :class => View
many :links, :class => Link

end RU by

class Link
include MongoMapper: :EmbeddedDocument
belongs_to :page

key :href
end
{
"_id" : ObjectId("4bd0@fd4814b55319f0000004"),
"url" : "http://www.myawsomesite.com"
"Tinks™ ¢ [
{ "_id" : ObjectId("4be3183f6al0fda8de@@@Of5"),
pV“()f]{;() "href" : "http://someothersite.com/page" },
{ "_id" : ObjectId("4be3183f6al@fda8dedd00f6"),
"href" : "/about_us.html" }
]
}
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class PageViewsByMonth

def map
<<MAP
function() {
emit( { 'page_id': this.page_id,

"day' : new Date( this.time.getYear(),
this.time.getMonth() ) }, 1 )
}
MAP
end
def reduce
<<REDUCE
function(key,values) {
sum = @;
values.forEach(function(value) {
sum += value;
D)
return sum;
}
REDUCE
end
def build
Views.collection.map_reduce( map, reduce )
end

end

~

Runs over all the
objects in the views
table, counting how
many times a page was
viewed

A
-~

Adds up all the counts
for a unique url / date
combination

A

~

)
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Run the map reduce job
and return a collection
containing the results

o
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Results

* Version 1 of our analytics system took 2 weeks
with 1 engineer

— We have since added a lot more complexity, but we did it
Incrementally

 We replaced MySQL entirely with MongoDB
— No need for joins, transactions
— Every table is now a document collection

e |It’s fast!

— 63ms — Average response time for sending data to server
— 93ms — Average response time for displaying reports
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