UOLLQQ

Scalable Event Analytics with
Ruby on Rails &MongoDB

Ruby Conf China 2010

Jared Rosoff (@forjared)
jrosoff@yottaa.com

yotlLaao

Yottaall!l (www.yottaa.com)

Vo Yottaa

€ > C N 1% hrp//wwwyottaz.com/ S

CREATE AN ACCOUNT LOGIN

Monitoring & Scoring the performance of
2,041 websites.

yottaa™

yottaa

Score your sites Claim your sites Follow other sites Benchmark your sites
for pardormance and and monitor the and put them into lists to and gauge them against
timization, improvements you make track thair progress. others you follow
L UL' -
96 e WS oW a N A
PN ovt‘n**"’u’ﬂL 2
youst A . FOM) 4
goot® & wors
Search Engines Soclal Networking Alexa Top §
hitp Sgocgie com http Macebook cam hepdgoogie.com
htip fing.com hitp fmyspace com tiip Macabook com
nip SYanoc com ﬂﬂ]] Muinercom l'ﬂ]:. tgm,n.rg £om
n Ak oom ntip Mnkadin com R Aahoo com

Overview

 Ruby at Scale
 What is Event Analytics?

 What are the different ways you could
do It?

e How we did it

yotlLaao

..............

.ooo.o........

® 9
"o
' »
‘.
“ .-
.......
‘. ..
M X
y »
»

' http://ww‘w.-f[ickr.com/photos/laughingsquid

Event Analytics

Data
Source
Event

Data
Source

Event Analytics

Data
Source

|

—_l_l
Data
Source

YotLtao

High Write Volume

*Each new data source adds X requests per second
*Data never stops arriving

Continuous Data Growth

*We only add more data
eHistorical data is valuable

Flexible Data Exploration

*Ad hoc queries
*Complex aggregations

YotLtao

Oh and we are a startup

Customer Development

o W i, W i I g

CUS!OH\Q(Customer Customer Scale

Dnscovey Valtdauy Creatly Compy

bW, =N
<3 N B Extreme Programming Project
s _‘. g g ¥roj

Tedt Scensnos

New User Story

User Stones A

L Anh(ccunlf,’,mmﬁ Release "pan

"
. Insights s Syike TGS R

" m(}cmm

Estrnites Edmates

sﬁ.k‘ Coroaght 200 5 Ukavaan Walle

Problem: Unknown Solution: Unknown

Source: Eric Ries
http//startuplessonslearned. blogspot.com

Our reguirements:

On Launch Day

of data sources 15
of events per minute 80
GBs data stored 20

3 months later (projected)

of data sources 45
of events per minute 5600
GBs data stored 100

yotlLaao

Ralls default architecture

yottaa

Ralls default architecture

\ ¢ “Just” a Rails App

yottaa

Ralls default architecture

* Performance Bottleneck:

/ . Too much load
[Data] A Collection Server \
I| Reporting Server |

\ ¢ “Just” a Rails App /

Source J

Let's add replication!

4 S

N—

[oure] Collection Server s MySQL
Source J Master
\-—r—r/
1 1\

I
I

1

N~ Master

N—

(—
(—
o Reporting Server —
MySQL

~

\
i E'\‘ Replication

/

yottaa

Let's add replication!

4 S

[Data |

Source J

Reporting Server

v
Collection Server >

SN~ —

Off the shelf!
Scalable Reads!

MySQL
Master

I
]
I

-
-

MySQL
Master

~

Replication

Let's add replication!

Performance Bottleneck:

/ Still can’t scale writes
N \

v
[oor] Collection Server > MySQL
Source J Master

Replication

U Reporting Server
MySQL

Master

Off the shelf!
Scalable Reads!

What about sharding?

yottaa

What about sharding?

/ J Scalable Writes! \

—
MySQL
Master
v

[Data |

Source J

H Reporting Server

Sharding

What about sharding?

-~

[Data |

Source J

Collection Server

Sharding]

-

yottaa

-

Reporting Server

Sharding}

J Scalable Writes!

—
MySQL
Master
v

-~

Development Bottleneck:
Need to write custom code

i

Key Value stores to the rescue?

yottaa

Key Value stores to the rescue?

-~

J Scalable Writes!

N

Collection Server

[Data |

Source J

H Reporting Server

Cassandra

or

Voldemort

yottaa

Key Value stores to the rescue?

/ J Scalable Writes! \

Collection Server

[Data |

Source J

Cassandra

or

‘ \ Voldemort
v
U

* Development Bottleneck:
K Reporting is limited / hard

-

Can | Hadoop my way out of this?

/T e U
N—
N—
Dat] Cassandra
[S at Collection Server > or
ource J ~ Voldemort

MySQL
Master

\/’E\
Reporting Server —> ~—— —
\ MySQL

yottaa

Can | Hadoop my way out of this?

Scalable Writes!
/ ¥ 4 N

[Data |

Source J

Collection Server >

yottaa

Cassandra

Reporting Server —>

Can | Hadoop my way out of this?

[Data |

Scalable Writes!
/ ¥ 4 N

Source J

Collection Server >

& Flexible Reports!

yottaa

Cassandra

Reporting Server —>

Can | Hadoop my way out of this?

/ ¢ Scalable Writes! N
[Data] Collection Server >
Source J

& Flexible Reports!

Cassandra

w “Just” a Rails App

-
yottaa \

Can | Hadoop my way out of this?

/ w Scalable Writes!

\
Data
Source)

Collection Server

* Development Bottleneck:

Too many systems!

w “Just” a Rails App

-

Cassandra

¢ Flexible Reports!

Reporting Server

yottaa \

MongoDB!

MongoDB!

/ J Scalable Writes! \

Collection Server

[Data |

Source J

N—

MongoDB

,)
ﬁ Reporting Server

yottaa

MongoDB!

v Scalable Writes!

yottaa

MongoDB!

¢ “Just” a rails app

¢ Scalable Writes!

AN h

[Data |

Source J

-

yottaa

J Flexible Reporting!

/

Data
Source

Load
Balancer

YotLtao

App Server

Collection

Reporting

¢ Sharding!

Data
Source

yottaa

¢ Sharding!

¢ High Concurrency

Collection n
‘ (o)
a0 \
c
o
>

Data
Source

N

Balancer

\

V

Passenger

Reporting ‘

yottaa

& Sharding!

w High Concurrency

w Scale-Out

[Data
Source | Collection ‘ ‘
Balancer , . (‘ ’
Reportin
| \ P g ’

Mongos

yottaa

MongoDBSharding

shard, shard. shard; shard,

replic s=t
config servers

yottaa

MongoDBSharding

shard, shard. shard;

config servers \

yottaa

mongod

replic s=t

Replica Sets let us
scale storage &
transaction capacity
for each shard

MongoDBSharding

shard, shard. shard;

replic s=t

config servers

Replica Sets let us
scale storage &
transaction capacity
for each shard

Mongos routes
transactions to shards
client
based on “shard key” -

yottaa

MongoDBSharding

shard, shard. shard;

Config servers store
information about
which shards exist

config servegrs

Replica Sets let us
scale storage &
transaction capacity
for each shard

Mongos routes
transactions to shards
client
based on “shard key” -

yottaa

Inserting

shard, shard. shard; shard,

/ -
/ repifics sat
config servers Insert { ‘name’ : bob }
//Q Shard key == name

m bob = Shard 2

insert { ‘name’ : bob }

yottaa

Querying
shard, shard. shard; shard,

/ -
/ repifics sat
config servers Query { ‘name’ : bob }
// Shard key == name

|

Query { ‘name’ : bob }

yottaa

Map Reduce

shard, shard. shard; shard,

replic s=t
config servers

Map-reduce(...)
7 -

Map-reduce(...)

yottaa

Working with Mongo

2T
AR

- * MongoMapper makes it
. look like ActiveRecord

Documents are more
natural than rows In
many cases

Map-Reduce rocks (but
needs better support in
rails)

http://www.flickr.com/photos/elhamalawy/2526783078/

class Page
include MongoMapper: :Document
key :url, :required => true, :indexed => true
many :views, :class => View

end

class View
include MongoMapper: :Document
key :created_at
key :user_id
belongs_to :page

def before_save
created_at = Time.now
end
end

yottaa

class Page
include MongoMapper: :Document
key :url, :required => true, :indexed => true
many :views, :class => View
many :links, :class => Link

end RU by

class Link
include MongoMapper: :EmbeddedDocument
belongs_to :page

key :href
end
{
"_id" : ObjectId("4bd0@fd4814b55319f0000004"),
"url" : "http://www.myawsomesite.com"
"Tinks™ ¢ [
{ "_id" : ObjectId("4be3183f6al0fda8de@@@Of5"),
pV“()f]{;() "href" : "http://someothersite.com/page" },
{ "_id" : ObjectId("4be3183f6al@fda8dedd00f6"),
"href" : "/about_us.html" }
]
}

yottaa

class PageViewsByMonth

def map
<<MAP
function() {
emit({ 'page_id': this.page_id,

"day' : new Date(this.time.getYear(),
this.time.getMonth()) }, 1)
}
MAP
end
def reduce
<<REDUCE
function(key,values) {
sum = @;
values.forEach(function(value) {
sum += value;
D)
return sum;
}
REDUCE
end
def build
Views.collection.map_reduce(map, reduce)
end

end

~

Runs over all the
objects in the views
table, counting how
many times a page was
viewed

A
-~

Adds up all the counts
for a unique url / date
combination

A

~

)
Y

-~

Run the map reduce job
and return a collection
containing the results

o

)
"

)

Results

* Version 1 of our analytics system took 2 weeks
with 1 engineer

— We have since added a lot more complexity, but we did it
Incrementally

 We replaced MySQL entirely with MongoDB
— No need for joins, transactions
— Every table is now a document collection

e |It’s fast!

— 63ms — Average response time for sending data to server
— 93ms — Average response time for displaying reports

yotlLaao

