
W W W . Y O T T A A . C O M C O N F I D E N T I A L © 2 0 1 5 A L L R I G H T S R E S E R V E D

YOT TA A .WHITEPAPER ();

The problem with conventional web optimization
approaches is that they just speed up loading the whole
page at once. What is wrong with this approach? The
problem is that users do not care about all content on a
page equally. Graphic designers have known for years
that where users see information displayed on a page
matters. So it makes sense that when users see informa-
tion displayed also matters — as in how fast they get to
see certain content and in what sequence. So if you wait
to display anything before you can display everything, you
are not giving users what they want when they want it.
They will have to wait for the content they care about
less in order see the content they care about more.

An alternative to the whole-page-fast approach is
context-based orchestration. In that model what users
want to see drives when they see it. And that what/when
decision depends on a whole host of factors that togeth-
er make up the context, including the user’s browser,
device, geographic location, and likely behavior in
response to the content. The idea is that by delivering
what users actually want rather than what a site owner
thinks is important, you’ll see a boost in metrics like
bounce rate, click through, and session time.

If the premise of context-based orchestration is true
then it begs the question: how can it be implemented?
One possible approach is a rulebook for web developers.
This might not be practical because of how fast the web
keeps changing: some optimizations that worked yester-
day do not work as well today — domain sharding, for
example. Moreover, context-based orchestration is
highly infrastructure-dependent, hence outside the
control of most web developers. Organizations, howev-
er, don’t have to build orchestration technology into

their website in order to apply it to their website. They
can focus on creating compelling digital experiences and
outsource delivery optimization to the cloud.

What site owners will want to know is how
context-based optimizations offer businesses advantag-
es over competitors that do not apply them. The secret
sauce is a cloud-based object model of their website — so
the actual website does not need to change in order to
change how content arrives. Applications apply rules
that transform the model into an optimized proxy of the
original website using a configuration language consis-
tent (and hence scalable) across all models. Everything
about the model can be decided by applying these rules,
including where geographically content is cached for
faster loading. Decisions are informed by integrated
analytics and by data from browser agents regarding
user actions and content load times — creating a feed-
back loop of content delivery to continuously prioritize
whichever specific pieces of content engage most.

Orchestrating Web Engagement Requires Dynamic Context Intelligence

An optimized web experience means putting the right content on the screen first in the least amount of time — given the
user’s browser, device, location, and likely behavior.

Mobile devices now generate over half
of all web traffic, so many website
owners have learned they need to
design their sites to fit both the mobile
device and the mobile user.

“ “

1

W W W . Y O T T A A . C O M C O N F I D E N T I A L © 2 0 1 5 A L L R I G H T S R E S E R V E D

DYNAMIC BUT CONSISTENT

PERSONALIZED

1. Most Web Resources are Static

In most web applications users need to look at and
absorb some static content before they can begin the
task they’ve come to do. As such, most web app pages
are still comprised primarily of static content, with
dynamic content (a cart checkout button, for example)
representing a tiny share of the overall page. Because
static content, by definition, is much less likely to change
than dynamic content, it is much more likely to be avail-
able in cache, and probably exists in a cache close to the
user via a content delivery network (CDN).

The result of all this is that loading all the static content
first makes the user feel engaged. They don’t miss what
they’re not looking for yet — the dynamic content. What
they perceive initially is what appears to be a full page of
content: and if caching is properly leveraged, the page
seems to display instantly. If one is seeking to achieve a
high-performing website that takes 1000 milliseconds
to display all page content, and it requires only 200 milli-
seconds to display the static content, that leaves a
budget of 800 milliseconds left over in which to fetch
and display the few pieces of dynamic content.

2. Whole Page Loads Intrinsically Degrade
 Engagement.

If you ever view a web page from a local server you might
be surprised at how slow the page loads. The fact is, most
websites display noticeably slower compared to, for
example, pages already cached in your browser — even
when no network contention or distance gets in the way. A
delay that still exists when there’s no Internet between
server and browser is not a delay that a CDN can remedi-
ate. The whole premise of a CDN is to speed up page
loads by moving content closer to the user.

There are a number of reasons pages load slower than
they could, whether accessed locally or over the Inter-
net. Some have to do with how a web page is coded,
others with the web infrastructure itself. Coding factors
would include things like whether there are delays in
JavaScript or CSS execution that could be avoided — for
example, by concatenating smaller blocks of code into
bigger blocks or by removing bottlenecks, such as when
some JavaScript has to wait for some CSS or vice versa.

Infrastructure factors would include things like cache
density. To speed up page loads, most modern websites
add cache to their web infrastructures, such as when
they employ CDNs or Varnish, a server-side open source
system for caching user requests. Most of the content
users see on their screens actually comes from a cache
and there are typically several layers of caching between
the user and the origin server. Cache density refers to
how much of a website’s content can be served from one
cache. The more of the page’s content that’s cacheable
the denser the cache, and the faster content loads.
That’s because each separate cache a browser needs to
access in order to completely load a page, or to load
multiple pages of the same site, requires a separate call
to a separate web address.

These are challenges built into most websites and most
web service infrastructures that make the decision to
load whole pages at once intrinsically degrading to
engagement.

The Whole Page Fallacy

In an ideal world a whole web page would always load instantaneously. But in the real world, trying to load whole pages
at once is not ideal, given these six key insights:

2

Even when page elements are dynamically served,
they are not personalized to the user and can be
cached.

W W W . Y O T T A A . C O M C O N F I D E N T I A L © 2 0 1 5 A L L R I G H T S R E S E R V E D

3. Web Users are Application-centric, Not Page-centric

We are long past the days when most websites were just
online versions of brochures. Even books and newspa-
pers have become highly engaging online vehicles for
user interaction. Websites have become true applica-
tions the client executes in order to complete tasks the
user wishes to accomplish — like purchasing products,
banking, and game playing — among thousands of exam-
ples that could be cited. When the purpose of web
content shifts from page display to task performance,
optimizing for page display loses its purpose. How well
you engage gets redefined as how well you make the
user feel enabled. In that context whether all the content
gets displayed at once is beside the point. What matters
is having enough of the right content displayed so the
user doesn’t feel like he or she is waiting for a gate to
open in order to get something done.

4. How to Engage Best Depends on the User’s Device

Mobile devices now generate over half of all web traffic,
so many website owners have learned they need to
design their sites to fit both the mobile device and the
mobile user. Compared to desktop PCs, mobile devices
typically have smaller screens, slower connection
speeds, and a soft interface rather than a keyboard and
mouse. Mobile users are also much more likely to be
using a website while busy with other activities like mall
shopping. That’s why, for example, there are responsive
websites — i.e., websites that change window size,
layout, and menu design dynamically depending on
screen size.

But how and where content is displayed on-screen is not
the only variable to be optimized based on “device
context.” When content is displayed it must also be opti-
mized to accommodate lower link speeds and cellular
networks. Responsive designs illustrate this dichotomy
best since the way they optimize a website’s appearance
for mobile may actually increase load times. That’s
because they load the whole page, even parts that won’t
appear on the screen until the user scrolls or taps a menu
button. So before users see any content they must
endure delays resulting from the loading of content they
may never need. And if they are loading this content over
a cellular network, that means they are also paying for
this unseen content. Optimizing for mobile would avoid
this possibility and delay loading content until it is actu-
ally requested.

But what is true for mobile users also applies to desktop
users:

5. Waiting for Hidden Content is not Optimal

Unseen or hidden content also degrades the desktop
user experience as well. Hidden content is content on a
page the user must click on to see, such as product
reviews or FAQs, where the user’s action expands the
page to reveal the content. In a non-optimized website
the user may experience additional slowness and a
“choppy” user experience until the hidden content is
loaded “behind the scenes.” In a context-optimized web-
site, the hidden content could load after an intentional
delay so that it does not interrupt the rendering of
visible content.

3

3rd party content like this Twitter widget can
improve user engagement unless it slows page
load time and creates bottlenecks in the user
 experience.

W W W . Y O T T A A . C O M C O N F I D E N T I A L © 2 0 1 5 A L L R I G H T S R E S E R V E D

4

1. No Website Modification

Forcing developers to change how they code websites
flies in the face of the dynamic web. Developers are
tasked with providing compelling digital environments
and rely on the infrastructure to deliver them. Asking
developers to also continually re-code how sites are
written so that the right content is optimally delivered
based on changing technologies and use cases is imprac-
tical. So, if context-based orchestration is going to work
it’s got to be hands-off the website.

2. Analytics and Rules

As just discussed, intelligence is all about having knowl-
edge of what actually engages users based on their actual
behavior on the site, and rules to determine how content
is delivered in a manner aligned with that behavior.

3. Layered Optimization Architecture

If you are going to have rules, then you also need a practi-
cal way to apply them within the content delivery infra-
structure. Just as you wouldn’t want developers to have
to continually recode their sites to stay current with the
changing web, you wouldn’t want to continually retool
the underlying infrastructure in order to employ the
most advantageous rules for orchestrating content
delivery. That suggests rule-based optimizations that
are layered so they could be added or subtracted incre-
mentally and can build off each other logically.

The Whole Page Alternative — Context Intelligence

The key difference between whole-page versus context intelligence is optimized orchestration — the ability to choreo-
graph how pieces of content are delivered for maximum engagement, taking into account the context in terms of tech-
nology and use case. So what would context-based orchestration look like? What would be the key strategies and what
key building blocks would best enable those strategies?

Clearly, the strategies would exploit the six insights just discussed, as in:

6. Web is Changing Very Fast

Finally, another reason to not base optimizations on
whole pages is that it force fits a static model onto a
dynamic environment. New web technologies and use
cases (think mobile and responsive design) are continu-
ally creating unforeseen contexts that conflict with
existing assumptions about what experience best engag-
es different users. The only way to match the page load-
ing experience to the user is by being able to adapt how
the page loads, granularly and regardless of how the web
evolves or how quickly.

That ability to adapt requires context intelligence, which
optimizing only for fast page loads doesn’t offer. This
requires intelligence in the areas of both analytics and
rules. In other words, you need to know what context
you are optimizing for and then have the ability to do
something about it.

Gathering this knowledge is only possible if there is
real-time feedback about what parts of a page engage
users most. For example, will the level of engagement
change if some content displays before other content, or
if users don’t have to scroll to see certain content?

But this information isn’t useful if you can’t do something
with it — that is, if you can’t actually change how content
actually loads given certain conditions. That means you
need rules, an engine to apply them, and a rules architec-
ture. You need to be able to layer those rules on top of
each other in a coherent way so that you’re not constant-
ly reinventing the wheel with every rule you add.

W W W . Y O T T A A . C O M C O N F I D E N T I A L © 2 0 1 5 A L L R I G H T S R E S E R V E D

4. A Document Object Model

If you are going to have rule-based optimizations to
change how content is delivered, it invites the question,
what exactly will these optimizations be changing, espe-
cially since the website is “hands off”? Generally, there
are only two ways to optimize how content is delivered:
change the website code itself or change the content as
it passes through the infrastructure (via a CDN, for
example). But if the website is off limits, that means that
you need to create a proxy, or document object model, of
the site and apply the site-related optimizations to the
model.

5. Consolidate Cache Keys for Denser Cache

On the infrastructure side, one of the optimizations that
can be applied is to redirect all requests to a given origin
server to the same cache, regardless of the requested
URL. This would mitigate the problem that arises when
the same content is cached in multiple locations because
different URLs were generated for the same content (as
happens in a Google search result, for example). Elimi-
nating these extraneous caches means that a user’s
browser makes only one call to get the same content,
greatly reducing load time.

6. Load Static Content Right Away

Here’s an example of a website optimization performed
via applications on the object model, which also doubles
as an infrastructure optimization. At the model level, the
optimization is to display static content first. That fills up
most of the page instantly, making the user feel immedi-
ately enabled. At the infrastructure level, the optimiza-
tion is to deliver content in closest geographic proximity
to the user, which is likely to be static content. That
makes it even more likely the page will appear filled right
away.

The key difference between whole-page
versus context intelligence is optimized
orchestration — the ability to choreo-
graph how pieces of content are deliv-
ered for maximum engagement, taking
into account the context in terms of
technology and use case.

“

“

5

Yottaa's InstantOn feature accelerates display of normally non-cacheable static content (like HTML body fragments)
and loads it instantly.

W W W . Y O T T A A . C O M C O N F I D E N T I A L © 2 0 1 5 A L L R I G H T S R E S E R V E D

07 APPLICATION

06 PRESENTATION

05 SESSION

04 TRANSPORT

03 NETWORK

02 DATA

01 PHYSICAL

 OSI MODEL

Y O T T A A

Client Browser

10:30

App Infrasructure

HTML

PARSE

DOM TREE

HTML ELEMENT

BODY ELEMENT

PARAGRAPH ELEMENT + DIV ELEMENT

TEXT + IMAGE

HTML TRANSFORM

6

7. Control the browser

How, when and which content gets loaded on the page is
ultimately the result of browser actions. So, for example,
if you want to load static content ahead of dynamic
content, you can tell the browser that is what you want
to do. As just discussed, by controlling the object model
proxy you can control the sequence of which kind of
content (code) gets rendered (executed) — even if that’s
a different sequence than in the origin website — thus
giving static content priority. You can also optimize cach-
ing so that content is sourced from the closest cache
location — giving static content priority by default.

But browser control also presents other opportunities
for context-based orchestration. That would be to
discover what the user is doing with the browser and feed
that information back to the applications controlling the
object model and delivery infrastructure. That feedback
enables machine learning — i.e., the logic responsible for
content sequencing is fine-tuned to better ensure the
sequence is based on content the user actually wants to
see. Content the user can’t see yet, such as an eCom-
merce security seal at the bottom of the page, might
then be delayed until the user actually scrolls to where
the content should be visible.

Yottaa’s Implementation

Given what we know about user engagement in the era
of the application-centric dynamic web and the strate-
gies for context-based orchestration, let’s look at
Yottaa’s real-world implementation as a model. Specifi-
cally, what are the key functional modules that actually
make these strategies work?

At a high level, the implementation provides five key
cloud-based functions: a configuration language,
content optimization, traffic management, browser
agent, and global load balancing.

Configuration Language

An orchestra requires a conductor. In this case that’s a
role played by a Yottaa engineer using a configuration
language to specify the rules governing how delivery of a
website’s content should be optimized.
The language is a Java-like syntax that can apply virtually
any policy concerning the sequencing of website
resources or the behavior of the underlying delivery
infrastructure (as in caching, for example).

That includes:

-What CSS and JavaScript code should be concatenated
to avoid needless processing delays (like when CSS inter-
rupts JavaScript or vice versa)

-Where should a particular piece of content be cached,
even if different from where other content on the same
page is cached

-That a particular piece of content (like a logo) will
always be cached regardless of the website’s HTML

-Which images, if any, the browser should always
pre-fetch

-The maximum number of URLs the browser can
connect to at the same time

- Which versions of a piece of content (e.g., the English or
Chinese version) are sourced or whether content (e.g.,
Facebook “like” icons) is sourced at all if there is no
reason for the user to see the content (e.g., it links to a
prohibited site)

W W W . Y O T T A A . C O M C O N F I D E N T I A L © 2 0 1 5 A L L R I G H T S R E S E R V E D

7

Policies consist of rules that exist in a library as pre-cod-
ed applications the engineer invokes using a
point-and-click graphical user interface. The result is a
rules document that directs how Yottaa modules
behave, specifically content optimization, traffic man-
agement, and global load balancing. There can even be
multiple versions of this document to support A/B
testing to see which rule sets (which “what/when”
profiles) achieve best engagement.

Content Optimization Module

This module drives on-page content orchestration — i.e.,
which content gets delivered to the browser in which
order. It contains logic that:

-Interprets the rules document

-Executes built-in policies that are turned on by default

-Performs machine learning based on feedback from the
browser agent (discussed below) and from integration
with third-party analytics so as to optimize orchestra-
tion based on actual user behavior

Running the content optimization on “auto pilot” means
that only default policies apply and that the Yottaa
system will do its best to optimize the site on its own.
These default policies represent best-in-class optimiza-
tions for most websites and provide a good head start so
as to reduce the effort and time needed for further
fine-tuning.

Consistent with the layered application strategy
discussed earlier, applications invoked by the rules docu-
ment are layered to easily accommodate new technolo-
gy and use cases either by adding new layers or deleting
old ones. Together these applications and the module’s
underlying logic comprise context intelligence — the
ability to respond to dynamic inputs such as a particular
user behavior and website analytics to align content
orchestration with real-world conditions.

Traffic Management Module

This module executes applications that determine
where specific pieces of content (like a video) are to be
sourced and by which route they are to arrive (such as
via a specific CDN). It is traffic management, for example,
that implements the caching strategy of consolidating all
cache tags belonging to the same URL to achieve denser
caches and therefore fewer DNS lookups.

Global Load Balancing

Yottaa leverages global cloud services providers such as
Amazon Web Services to position its runtime services at
geographic locations advantageous for optimum user
engagement based on link latency and where users and
content are located.

Because those factors may be different for different
websites at different times, so may be how Yottaa
resources are balanced.

Browser Control Agent
This is code that Yottaa puts in the browser to do two
things:

-Tell the context intelligence (via an API) about user
actions so machine learning can occur regarding which
content is most engaging (e.g., most users run the video
first)

-Tell the browser in which sequence to load specific
content items in response to the context intelligence

The browser agent essentially closes the feedback loop,
creating a virtuous cycle in which initial optimizations
improve user engagement, the results of which enable
further optimization — and so on.

Hands-Off Optimization

Intelligent context-based content orchestration is also
“hands-off” orchestration. Because all services are
based either in the cloud or the user’s browser, the web-
site itself does not need to be changed. Only its DNS
needs to edited so that requests to the website are redi-
rected transparently to the document object model —
the website’s proxy in the cloud — against which all the
optimizations are applied.

That means zero footprint on the business infrastruc-
ture and zero implementation overhead, with less than a
day to set up, plus a pay-as-you-use service model. Con-
figuration can be done anywhere via the web. And, best
of all, results are easily tracked and based on actual
engagement metrics (not just technical metrics like
latency). That is the sustainable business advantage
website owners will want.

